Geometry of Random Surfaces

Sahana Vasudevan
Massachusetts Institute of Technology

April 27, 2019

Random surfaces in moduli space

- $\mathcal{M}_{g}=$ moduli space of compact Riemann surfaces of genus g
- Fenchel-Nielsen coordinates on \mathcal{M}_{g} : given by length of curves in a pair of pants decomposition $\ell_{1}, \ldots, \ell_{3 g-3}$, and twist parameters $\tau_{1}, \ldots, \tau_{3 g-3}$ that indicate how to glue along the boundaries of the pairs of pants

Random surfaces in moduli space

- $\mathcal{M}_{g}=$ moduli space of compact Riemann surfaces of genus g
- Fenchel-Nielsen coordinates on \mathcal{M}_{g} : given by length of curves in a pair of pants decomposition $\ell_{1}, \ldots, \ell_{3 g-3}$, and twist parameters $\tau_{1}, \ldots, \tau_{3 g-3}$ that indicate how to glue along the boundaries of the pairs of pants
- Weil-Petersson (WP) metric on \mathcal{M}_{g} : Kahler metric, volume form given by $d \ell_{1} \wedge d \tau_{1} \wedge \ldots \wedge d \ell_{3 g-3} \wedge d \tau_{3 g-3}$

Random surfaces in moduli space

- $\mathcal{M}_{g}=$ moduli space of compact Riemann surfaces of genus g
- Fenchel-Nielsen coordinates on \mathcal{M}_{g} : given by length of curves in a pair of pants decomposition $\ell_{1}, \ldots, \ell_{3 g-3}$, and twist parameters $\tau_{1}, \ldots, \tau_{3 g-3}$ that indicate how to glue along the boundaries of the pairs of pants
- Weil-Petersson (WP) metric on \mathcal{M}_{g} : Kahler metric, volume form given by $d \ell_{1} \wedge d \tau_{1} \wedge \ldots \wedge d \ell_{3 g-3} \wedge d \tau_{3 g-3}$
- Question: if we pick a random surface from \mathcal{M}_{g} according to the WP volume, what does it look like geometrically?
- shortest geodesic?
- diameter?
- Cheeger constant?

Random surfaces in moduli space

- $\mathcal{M}_{g}=$ moduli space of compact Riemann surfaces of genus g
- Fenchel-Nielsen coordinates on \mathcal{M}_{g} : given by length of curves in a pair of pants decomposition $\ell_{1}, \ldots, \ell_{3 g-3}$, and twist parameters $\tau_{1}, \ldots, \tau_{3 g-3}$ that indicate how to glue along the boundaries of the pairs of pants
- Weil-Petersson (WP) metric on \mathcal{M}_{g} : Kahler metric, volume form given by $d \ell_{1} \wedge d \tau_{1} \wedge \ldots \wedge d \ell_{3 g-3} \wedge d \tau_{3 g-3}$
- Question: if we pick a random surface from \mathcal{M}_{g} according to the WP volume, what does it look like geometrically?
- shortest geodesic? $\geq C$ with high probability asymptotically
- diameter? $\leq C \log g$ with probability 1 asymptotically
- Cheeger constant? $\geq C$ with probability 1 asymptotically [Mirzakhani]

Random triangulated surfaces

- Triangulated surface: genus g surface S built out of T equilateral triangles, comes with a canonical complex structure

Random triangulated surfaces

- Triangulated surface: genus g surface S built out of T equilateral triangles, comes with a canonical complex structure
- if $T \sim 4 g$, then the flat metric on S is roughly similar to the hyperbolic metric

Random triangulated surfaces

- Triangulated surface: genus g surface S built out of T equilateral triangles, comes with a canonical complex structure
- if $T \sim 4 g$, then the flat metric on S is roughly similar to the hyperbolic metric
- Question: if we pick a random triangulated surface with genus g and T triangles, what does it look like geometrically?
- shortest geodesic?
- diameter?
- Cheeger constant?

Random triangulated surfaces

- Triangulated surface: genus g surface S built out of T equilateral triangles, comes with a canonical complex structure
- if $T \sim 4 g$, then the flat metric on S is roughly similar to the hyperbolic metric
- Question: if we pick a random triangulated surface with genus g and T triangles, what does it look like geometrically?
- shortest geodesic? $\geq C$ with probability 1 asymptotically
- diameter? $\leq C \log g$ with probability 1 asymptotically
- Cheeger constant? $\geq C$ with probability 1 asymptotically [Brooks-Makover]

Random triangulated surfaces

- Triangulated surface: genus g surface S built out of T equilateral triangles, comes with a canonical complex structure
- if $T \sim 4 g$, then the flat metric on S is roughly similar to the hyperbolic metric
- Question: if we pick a random triangulated surface with genus g and T triangles, what does it look like geometrically?
- shortest geodesic? $\geq C$ with probability 1 asymptotically
- diameter? $\leq C \log g$ with probability 1 asymptotically
- Cheeger constant? $\geq C$ with probability 1 asymptotically [Brooks-Makover]
- Conjecture [Brooks-Makover, Mirzakhani, Guth-Parlier-Young]: discrete measure is a good asymptotic approximation for the WP volume on $\mathcal{M g}_{g}$

References

围
R. Brooks, E. Makover

Random constructions of Riemann surfaces
Journal of Differential Geometry, 2004.
R. L. Guth, H. Parlier, R. Young

Pants decompositions of random surfaces
Geometric and Functional Analysis, 2011.
囯 M. Mirzakhani
Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus
Journal of Differential Geometry, 2013.

